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Modern split component evaluations of the flux vector jacobians axe thoroughly

analyzed for equilibrium-gas average-state determinations. It is shown that all such

derivations satisfy a fundamental eigenvalue consistency theorem. A conservation -

variable average state is then developed for arbitrary equilibrium-gas equations of

state and curvilinear-coordinate fluxes.

Original expressions for eigenvalues, sound speed, Mach number, and eigenvec-

tors are then determined for a general average jacobian, and it is shown that the

average eigenvalues, Mach number, and eigenvectors may not coincide with their

classical pointwise counterparts.

A general equilibrium-gas equation of state is then discussed for conservation-

variable CFD Euler formulations. The associated derivations lead to unique com-

patibility relations that constrain the pressure jacobian derivatives. Thereafter,

alternative forms for the pressure variation and average sound speed are developed

in terms of two average pressure jacobian derivatives. Significantly, no additional

degree of freedom exists in the determination of these two average partial deriva-

tives of pressure. Therefore, they are simultaneously computed exactly without

any auxiliary relation, hence without any geometric solution projection or arbitrary
scale factors.

Several alternative formulations are then compared and key differences high-

lighted with emphasis on the determination of the pressure varia¢ion and average

sound speed. The relevant underlying assumptions are identified, including some

subtle approximations that are inherently employed in published average-state pro-

cedures.

Finally, a representative test case is discussed for which an intrinsically exact

average state is determined. This exact state is then compared with the predictions

of recently published methods, and their inherent approximations are appropriately

quantified.



Introduction

Since the notable paper by Roe [3], the classical average state and associated

flux difference splitting algorithm haw attracted the attention of several CFD re-

searchers. Liou and van Leer [5] use this approach, and compare it to several flux

vector splitting schemes for selected quasi 1-D problems, while Simpson [6] conducts

a similar analysis for various 2-D airfoil flow field determinations. One often cited

advantage of an average-state flux difference splitting algorithm lies in its reduced

amount of intrinsic dissipation with respect to that inherent in the classical Steger-

Warming and van Leer flux vector spiittings. Furthermore, its capability to yield

crisp shock resolutions makes it an attractive algorithm. These attributes have thus

promoted continued research on real gas extensions, which ushered in the conspic-

uous works of Glaister [4], Liou, van Leer & Shuen [8], and more recently Vinokur

&=Montagne [9], among others.

The linking thread of these fundamental contributions is the utilization of the

classical ideal-gas average state as a building block in seeking a kindred real gas

average state. As detailed in Section 4, all such derivations separate the pressure

from the kinetic/energy terms, which corresponds to a decomposition of the flux

vector into convection and acoustic-wave components. The kinematic/energy rela-

tions are then exactly satisfied by the ideal-gas average state, whereas the pressure

variation relation is evaluated at some specially devised average partial derivatives

of pressure. The advantage of this procedure is that for an n-dimensional formula-

tion, one eigenvalue of the associated average jacobian coincides with the ideal-gas

average velocity, with algebraic and geometric multiplicity equal to n, while the

other eigenvalues resemble the eigenvalues of the pointwise jacobian.

In the published procedures [4,8,9], the terminal average jacobian is obtained

by restating the pressure jacobian in terms of two average thermodynamic pressure

derivatives. The pivotal equation to be satisfied is then the pressure variation

relation in terms of these two average derivatives, which are essentially regarded as

two auxiliary independent variables. Hence, the pressure variation relation is viewed

as a single admissible-state straight llne equation in the two initially unknown partial

derivatives of pressure. Therefore, an absence on mathematical closure is perceived,

and additional constraints are then devised to complement the pressure variation

equation. As detailed in Section 9, these constraints are inherently based upon

an ideal-gas average-state evaluation of selected expressions within the jacobian

pressure variation, a choice of convenient integration paths and associated auxiliary

states, and a utilization of geometric trim solution projections and scale factors.

The specific avenue to develop the terminal average pressure derivatives then

distinguishes each procedure. For example, in conjunction with an extra average

mass-specific internal energy, Glaister [4] introduces additional intermediate states,

whereas Liou et al. [8] utilize additional auxiliary partial derivatives of pressure.
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These procedures actually correspond to an approximate integration of the pressure

differential, upon selection of convenient integration paths, as discussed in Section

9. This notion is expressly utilized by Vinokur et al. [9] who provide an exact

integral representation for these derivatives. They then integrate these expressions

numerically for an alternative determination of another set of average partial deriva-

tives. These constructions employ an independent internal energy variation, even

though this variation directly depends upon the state variable, as detailed in Sec-

tion 8. Futhermore, this approach generally yields approximate solutions that may

not satisfy the pressure variation relation. Consequently, the terminal derivatives

that do satisfy this relation are determined by projecting the approximate solutions

onto the admissible-state straight line, according to a set of scale factors.

Putting aside the legitimate concern that additional intermediate states may

not be permissible by the given real gas equations of state, the crucial issue is

that these procedures require several assumptions and introduce different sets of

average partial derivatives of pressure and sound speed expressions. And even

though these relations satisfy a fundamental eigenvalue consistency theorem, they

generally do not coincide with one another, or they may not exist in the domain of

the analytical partial derivatives, or they may correspond to conservation-variable

evaluations states outside the hyper-segment connecting the two given cell states,

or they may yield indeterminate expressions. Thus, they may correspond to a

state weakly related to the given cell states, notwithstanding the exact algebraic

enforcement of the pressure variation expression.

In this connection, a representative test case in Section 10 illustrates the differ-

ence between an exact average state and the predictions of some of these methods.

The average-state jacobian may thus become less representative of the local wave

interaction patterns, thereby defeating the concept of an accurate approximate local

Riemann solver for which the average-state notion was introduced in the first place.

Moreover, citing Vinokur [9], the amount of intrinsic dissipation in these conditions

may become a vaguely identified quantity.

In this report it is shown that the published equilibrium-gas average states [4,8,9]

satisfy a fundamental eigenvalue consistency theorem. According to this theorem,

if the flow is locally subsonic, the eigenvalue set of any associated average jacobian

will contain mixed sign eigenvalues, whereas for a locally supersonic flow all average

eigenvalue sets will contain uniform sign eigenvalues. The most recent average-

state determination procedures are discussed, and a set of conservation-variable

average states is then developed for arbitrary equilibrium-gas equations of state

and curvilinear- coordinate fluxes. These states correspond to an internal average

state belonging to the hyper-segment connecting the given computational cell left

and right states.

A detailed characteristic analysis of the general curvilinear coordinate average

jacobian is performed which leads to original expressions for eigenvalues, sound



speed and Mach number in terms of the pressure jacobian. These relations, which

revert to the classical thermodynamic expressions, show that the average eigenval-

ues, Mach number and eigenvectors may not coincide with the classical pointwise

forms.

Since for an equilibrium-gas formulation, pressure is a function of only two ther-

modynamic variables, it is then:Shown that the pressure:jacobian derivatives are not

functionally independent. On the contrary, they satisfy a compatibility constraint

that leads to alternative expressions for the pressure variation and average sound

speed in terms of only two average pressure jacobian derivatives. These expres-

sions do not explicitly depend upon the thermodynamic internal energy, since in a

CFD formulation this variable is not independent, but is expressed in terms of the

conservation state variable. Considering that within the mean value theorem reso-

lution of the pressure variation, the pressure derivatives are intrinsic functions of a

conservation state variable, it is shown that no additional degree of freedom exists

in their computation. Therefore, these derivatives are simultaneously determined

exactly without resorting to any geometric solution projection and arbitrary scale

factors. The developed formulae, which bear a striking similarity with the classi-

cal thermodynamic relations, apply for totally arbitrary equilibrium-gas equations

of state, and yield as approximate cases several expressions utilized in reported

procedures. These alternative formulations are then compared and their intrinsic

underlying assumptions are identified including some inherently employed subtle

approximations.

To conclude, a representative test case is analyzed for which an intrinsically

exact average state is determined without separating the kinematic/energy terms

from the pressure relation in the flux difference resolution. Using this average state,

the related exact average thermodynamic pressure derivatives and sound speed are

computed. These results are then compared with the predictions of recent methods

and their inherent approximations are appropriately quantified.

This report is organized in 10 Sections. Section 1 delineates the relevant form

of the curvilinear-coordinate Euler equations, while Section 2 contains several the-

oretical average state considerations. Section 3 presents the eigenvalue consistency

theorem, while Section 4 details the split component evaluation of the flux vector

jacobian. Sections 5-6 are devoted to the development of the conservation-variable

average state for one- and multi- dimensional curvilinear coordinate fluxes, and a

discussion of the ideal gas average state. Section 7 details the characteristic analysis

derivation of the eigenvalues and the sound speed expression in terms of the pres-

sure jacobian, while the pivotal average partial derivatives of pressure are directly

determined in Section 8. Finally, several comparisons with other average-state for-

mulations are presented in Section 9, while representative results are discussed in

Section 10.

4



1 Governing Equations

The cartesian coordinate Euler equations in conservation law form are

on _+ x f_, t :> to, t, to E _+, f_C_", l_<n_<3 (1)

where n denotes the spatial dimensionality. The state variable q = q(x, t), and the

flux vector fj = fj(q) are

q= m , fj =- = :-_ rn + p6j , l<g<n+2 (2)

E _2(E+p)

where p is the fluid density, m = pu is the linear momentum vector, p is the static

pressure, _j = {_j}, 1 < i < n, is the Kronecker delta mixed tensor, and E is the

volume specific total energy. System (1)-(2) is then closed with an equation of state

for pressure. For a homogeneous gas in thermo-chemical equilibrium, this equation

of state may be expressed as a function of q, differentiable almost everywhere [1] in

f/, of the form

p = p( q(_, t) ) (3)

as detailed in Section 8.

With these specifications, the conservation state variable q constitutes the differ-

etiation variable for determining the jacobian matrix Aj(q) of fj(q). Consequently,

any other variable introduced to compute Aj(q) will depend upon q. Hence, the

partial derivatives of p(q) in Aj(q) coincide with the jacobian of p(q) with respect

to q. This pressure jacobian can certainly be computed by way of the differenti-

ation chain rule and the thermodynamic derivatives of pressure: Nonetheless, the

required additional thermodynamic variables are themselves functions of q. These

considerations have significant repercussions on the interpretation and evaluation

of the pressure variation relation, as thoroughly documented in Section 8.

For arbitrary-geometry computations, the cartesian coordinates x are trans-

formed into curvilinear coordinates r/via the relation

x = x(l?) (4)

Function (4) must be single valued and have continuous first partial derivatives.

The jacobian Y of the coordinate transformation (4) is

J= -t0.k] (5)



The relation between the xi and r/j partial derivatives is then

{0}r0  l{0}{0}= [0,7_.1Ygxj= J _ (6)

Therefore, the partial derivatives with respect to the cartesian coordinates xj are

expressed using the inverse of (6) as

{ 0_xj}=j_l{ 0}_ - detlj [detJ.j_l]{ 0}_ (7)

where det J does not vanish and keeps a uniform sign in f_. With these specifica-

tions, the matrix [det J-j-l] is denoted as [ejk]. The metric data ejk, with con-

tinuous partial derivatives in their definition domain, then satisfy the fundamental

invariance relation

0ejk_0 , z<j<n (8)
k=l 0r/k - -

Inserting (7)-(8) into (1) yields the contravariant conservation law system

Oq 1 oL _ o (9)
-_ + det J 0r/k

where the contravariant flux ]k is defined as

h (1o)

e,,=#(E+ p)
The curvilinear coordinate average states are then determined for the jacobian of

this contravariant flux, as detailed in Section 4.

2 Theoretical Average States

A set of average states for expressing the flux variation exists by virtue of the mean

value theorem. For an ideal gas, the original resolution [3] accrues from one average

state and one average enthalpy. For a real gas, an analogous resolution also depends

upon the partial derivatives of pressure.

The variation of each flux component f5 in (2), (10) can be expressed by way of
the multi-dimensional mean value theorem as

:,f:= o:: d-0W(¢+ (:-¢)) "(:- :)
= oA(:).(:-:)

Oq
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where the partial derivatives in (11) are evaluated at the internal state

__ = qL + at (qR _ qL) (12)

In (11)-(12) superscripts L and R denote the available computational-cell left and

right states respectively. Furthermore, each weight parameter a t satisfies the rela-

tion

O.O<_a t<_l.O , l<e<n+2 (13)

In general, these parameters may not coincide with one another, and hence the

internal states _, 1 < _ _< n + 2, may differ from one another. Therefore, the

variation of the flux vector (2), (10) is cast as

Aj (¢,_2,...,_-_+2) Aq = Afj (14)

where, following (11), the f th row of Aj is evaluated at _. Furthermore, more than

one state may exist for a fixed e. Thus, the average state is in general non-unique.

While the mean value theorem evaluation relies on at most n+2 states, the most

recent developments only need fewer such states upon introduction of an additional

average enthalpy. This reduction accrues from an independent application of the

mean value theorem to specific components in the resolution of each flux vector

component variation. For example, (11) can be cast as

Aff = _xf;'+ AS;' of;' __ og' j_
(15)

whereupon, the mean value theorem independently applied to Afy and Afj _t yields

_ + _ )
Oq

Af;t Of;' 5/_= o-7 +

(16)

(17)

As shown in Section 4, this procedure corresponds to a convection/acoustic-wave

flux vector decomposition that is intrinsically utilized in [4,8,9].

Even though several CFD papers [3, 5, 8, 9] employ the appealing notation

Aj(_)Aq = Afj (18)

which relies on a free interpretation of the multi-dimensional mean value theorem

and presumes the existence of a single average state _ valid for each and every flux

vector component, the original ideal-gas average state [3] violates the mean value

theorem (11) in the flux vector energy component variation, as detailed in Section 6.
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Nevertheless, the original average state successfully yields a closed form resolution

for (11) using an additional average enthalpy H. Thus (18) can be more accurately

cast as

Ai (_,._) Aq = A fj (19)

and is at variance with the developments in [3]. As proved in Section 5, expression

(19) for an ideal gas can be alternatively cast as

Aj (_,fi) Aq = A fj (20)

upon identification of an internal-average total energy with associated average pres-

sure/3. For a general equilibrium gas equation of state, expression (20) is expanded

as

(
where a tilde denotes average partial derivatives. In this form, relation (21) indi-

cates the crucial functional dependence of the flux vector jacobian upon the partial

derivatives of pressure.

3 Eigenvalue Invariance Relations

Considering the non-uniqueness of the average states, several dissimilar average ja-

cobians can be developed for a single state-variable pair. Consequently, the spectra

of these jacobians will not coincide with one another. While this situation may be

unavoidable, physical consistency demands that, for a local flow of a specific charac-

ter (subsonic or supersonic), all associated average jacobians for any average state

must correspond to a uniform set of eigenvalues. Therefore, if the flow is locally

subsonic, the eigenvalue set of any associated average jacobian must contain posi-

tive and negative eigenvalues, whereas for a locally supersonic flow, the eigenvalue

set of all associated average jacobians can only contain uniform sign eigenvalues.

If this property were not always met, then for some subsonic flows, a flux differ-

ence splitting implementation may lead to a fully upwind scheme for all flux vector

components, which may in turn engender numerical solution instability. As proven

by the following n-dimensional-formulation theorem, those average jacobians that

satisfy (21) and share the ideal-gas average velocity eigenvalue, with algebraic and

geomentric multiplicity equal to n, display consistent eigenvalue sets with mixed-

or uniform-sign eigenvalues for a subsonic or supersonic flow state respectively.

Definition: two non-singular matrices are defined eigenvalue consistent when

their spectra have the same number of positive and negative eigenvalues.
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Theorem 1 Let two non-singular and diagonaIizable average jacobians correspond

to any single set of state variable and flux variations Aq and A f. These jacobians

are then always eigenvalue consistent for supersonic flows. For subsonic flows they

are eigenvalue consistent if for an n dimensional formulation they share one eigen-

value with algebraic and geometric multiplicity equal to n.

Proof. For any state variable variation Aq, the resolution of the associ-

ated flux variation Af for any two generally different average states can

be expressed as

A q1,_1, -_q 1 Aq=Af, A q2,_, -_q s

Given the purely algebraic nature of the following derivations, (22) is

abridged as

AxAq= Af , A2Aq= Af (23)

Since each matrix in (23) is diagonalizable, each possesses a complete

set of eigenvectors. Hence Aq can be expressed as

Aq= Xxb , Aq= Xsc (24)

In (24), X1 and X2 are the eigenvector matrices for Ax and As respec-

tively, while b and c are the associated eigenvector coefficient set. From

(24) it follows

Xlb = Xsc (25)

Furthermore, expressing the matrices A1 and As by way of a similarity

transformation yields

X1A1X_IAq = Af , XsAsXflAq = Af (26)

where A1 and A2 are the diagonal matrices containing the eigenvalues

of A1 and A2 respectively. Inserting (24) into (26) leads to

X1A, b = Af , XsAsc = Af (27)

whence

XlAlb = XsAsc (28)

Thereafter, (25) and (28) lead to the following expressions for b

b= (xc x ) (29)
b = (xr'xs) Asc (3o)



It must be shown that when A1 displays a certain number of positive and

negative eigenvalues, A2 has the same number of positive and negative

eigenvalues. Therefore, for any Aq, hence for any b, consider the positive

bilinear form

0 < bTIxAlb (31)

In (31), 2"1 is a diagonal matrix with entries a_, 1 _< j <: n + 2, equal

to +1 or -1 only, depending on the algebraic sign of the eigenvalues in

A1, such that the matrix 2"1A1 is positive definite. Expressing bT and b

in (31) by way of (29) and (30) respectively yields

According to (31), the matrix in (32) is positive definite. Consequently,

all of its principal minors

(33)

must be positive [2]. Considering the diagonality of A2, this matrix

minor positivity property is expressed as

0

i

= det [(XCIx2)T2-1 (X_'IX2)] _ rI A_
j=l

, l<i<n+2 (34)

where ,_{, 1 < j < n + 2, denote the eigenvalues in A2. For a supersonic

flow, all the eigenvalues in A1 have the same algebraic sign. Hence, all

of the entries a_ in 2"1 are equal to one another, and (34) thus becomes

[(, )] '0<det X_ X2 X[1X2 II afA , l<i<n+2 (35)
i j----1

Furthermore, the matrix

1 T=(xcx,) (36)

is certainly positive definite, as well as symmetric, since it corresponds

to the matrix product of a non-singular matrix and its transpose. Con-

sequently, the matrix minors

[¢, )]det[Y]i=det X_ X2 X_I X2 , 1< i < n + 2
i

(37)
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are also positive. Therefore, it follows from (35) that

(as)31,_2>0 , l<j<n+2

Hence, if)_ > 0, 1 < j < n+2, then a_ = +1, 1 < j < n+2, and

_ >0, l_<j <n+2, whereas if )_ <0, 1 <j <n+2, thena_=-l,

1 < j < n + 2, and A_ < 0, 1 < j _< n + 2, which proves eigenvalue

consistency.

For subsonic flows, A1 has mixed sign eigenvalues. It thus has two eigen-

values of opposite sign in addition to one eigenvalue with multiplicity n.

Therefore, 2"1 has entries with different algebraic sign and consequently

its determinant can be either positive or negative. For i = n + 2, ex-

pression (34) yields

n+2

0 < det [Y]. det [21]" 1-I A_ (39)
j=l

Consequently,
n÷2

0 < det [2"1]" II AS (40)
j=l

The eigenvalues A_, 1 < j <: n + 2, cannot all have the same algebraic

sign, otherwise, according to the previous conclusion, the same would

hold true for Ai, 1 < j _< n + 2, and the flow would be supersonic.

Therefore, A2 will display at least two eigenvalues of opposite sign. By

hypothesis, A1 and A2 already share one eigenvalue with multiplicity n,

and for one- and three- dimensional formulations, n is an odd number.

In this case, if the common eigenvalue is positive, respectively negative,

det[Z1] is negative, respectively positive. Thus, from (40), det [A2] is

negative, respectively positive, but in either case A2 has n eigenvalues

with the same sign and two eigenvalues with opposite sign. For a two-

dimensional formulation, n is an even number and det [2-1] is always

negative. Therefore, from (40) det [A2] will always be negative, and

thus A2 has again n eigenvalues with the same sign and two eigenvalues

with opposite sign. Hence, also for subsonic flows A1 and A2 have the

same number of positive and negative eigenvalues.

Finally, since this proof is valid for any two average jacobians that satisfy

the stated hypotheses, it remains valid for all such jacobians [::1.

By virtue of this theorem, a flux-difference splitting procedure will always yield

the appropriate upwind scheme, for both subsonic and supersonic flows, for any

average state that satisfies (21), provided that the associated average jacobian has

11



one eigenvalue with algebraic and geometric multiplicity equal to n. Therefore, it

is not strictly indispensable to upwind scheme appropriateness that the eigenvalues

of all average jaeobians, associated with a single local flow character, coincide with

one another. However, the closer the average eigenvalue sets are in an appropriate

norm to the pointwise set, the more accurate the average-state flux vector difference

resolution becomes. The following theorem shows that this eigenvalue convergence

property directly depends upon the eigenvector matrices, as can be easily imagined.

Theorem 2 If the matrices A1 and A2 in Theorem 1 share the same eigenvector

ma_riz X, then they also share the same eigenvaIues.

Proof. Theorem 1 yields the relations

(41)

Since X1 = X2 = X, (41) yields

c = A_-'A2c (42)

Therefore, Aa and A2 have the same eigenvalues o.

Consequently, it becomes convenient for the average eigenvector matrix to remain

close in an appropriate norm to the pointwise eigenvector matrix. This is especially

important for transonic or stagnation-point flows where one or more average eigen-

values may vanish, hence some hypotheses of the eigenvalue consistency theorem

may not be satisfied.

4 Reference Jacobian and

Current Evaluation Procedures

Specific average states are determined such that the relations corresponding to the

flux difference resolution

Aj (_',/3, (_/m,E, /00--_m) p,E, /_) p,m) Aq ----Afj (43)

are formally satisfied. For a reference one-dimensional formulation, the average

jaeobian in (43) is

12



( 0

_2 _pp

, 2=+ , _-_
p ,E

rn,E _" +_- Tm p,E 7 1+ _ p,m

(44)

Therefore, (43) yields the identity

m R _ m L = m R _ m L (45)

for the continuity equation,

("_-"_)+_-z(m__m_)+

op

(_)_+_ (m_)_ _
pn pL

for the momentum equation, and

E n _ E L) =
p_m

(46)

_ (_+_)(p_-p_)+--=(m_-m_)+ (E_-E_)+p -#

m R m L

_ (_ +_) - 7 (_ +_) (4_)
for the energy equation.

These three relations would constitute a very appealing formulation if a single

average state _" were efficiently identifiable for the evaluation of the jacobian state

vector terms as well as pressure and its partial derivatives. Certainly (46)-(47)

form a non-linear system of two equations for the three unknown components of

_. Hence, the average state _ could coincide with the solution of this system.

However, no complete information exists to date regarding solution existence, let

alone uniqueness.

Therefore, the current formulations seek an average state by separating the

pressure from the kinematic/energy terms in the momentum and energy equations,

following (15)-(17). This procedure corresponds to a decomposition of the flux

13



vector fj(q) into the physically distinct convection and acoustic-wave components

f;(q) and f;(q)

fj(q) = f_(q) + f_(q) (48)

with definitions

mj{ /f](q) -- -- m , f](q) - p,Sj

P E+p 0

(49)

The jacobian Aj(q) of fj(q) is then

ofj _ of 7 of; (50)
Aj(q)- Oq 0---_+ O----q-

Consequently, the resolution of the flux vector fj(q) can be expressed as in (15)-(17).

The associated convection and acoustic-wave average states may then be distinct

from one another considering the difference between these two processes.

Thereafter, the variations in the kinematic/energy terms in the convection flux

axe expressed in terms of the ideal gas average state, whereas the pressure varia-

tion in the acoustic-wave flux is evaluated by way of some specially devised average

partial derivatives of pressure. The developed average density and velocity (or mo-

mentum) that satisfy the momentum equation are then inserted into the energy

equation. This technique yields an average enthalpy (or energy with associated

pressure as shown in Section 5) in closed form which however does not satisfy the

mean value theorem for the energy equation, as proven in Section 6. Nonetheless,

a distinctive advantage of this modus operandi is that one eigenvalue of the as-

sociated average jacobian is always the ideal-gas average velocity, with algebraic

and geometric multiplicity equal to n, which satisfies the hypotheses of the eigen-

value consistency theorem. Furthermore, the other eigenvalues resemble those of

the pointwise jacobians, as detailed in Section 7.

For the convection flux resolution, the separate evaluation method yields the

identity

m R - m L = m R - m L (51)

for the continuity equation,

(mR) 2

_2 (pR _ pL) + 2___ (m R - m L) __ pRp

mL)

pL
(52)

for the momentum equation, and

- ÷-z(,,,R_ ÷-z -
= mR__FR _

pR

m L

pL
EL (53)

14



^ P I.. rr_R r/2 L
_ m R pL (54)

for the energy equation.

The terminal form of (54) is obtained by virtue of the pressure variation expres-

sion associated with the acoustic flux. From (49)-(50) and for an n dimensional

formulation, this expression is

_P _P pR pL

(55)
which thus becomes the crucial relation to be satisfied. As fully detailed in Section

9, the various procedures published thus far [4,8,9] differ in the specific avenue to

evaluate this pressure relation, even though they share the common feature of alge-

braically constructing sets of average partial derivatives of pressure assuming several

geometric solution projection rules and associated scale factors. Consequently, the

corresponding solutions remain inextricably tied up with these assumptions. On

the contrary, the developments in Section 8 dispense with these assumptions by

exactly determining the intrinsic acoustic-wave average state that satisfies (55).

5 Conservation Variable Average States

It is often reported that an average density fi can be chosen freely [8], and that

there is no physical basis for introducing specific expressions for _ [9]. However, the

classical average density t3, as well as the average momentum _, and volume specific

total energy E can all be analytically determined in a rigorous manner invoking the

mean value theorem for the flux difference resolution (44). The resulting expressions

p : pL "l- Ol (tOR -- pL) (56)

(57)

(58)

(59)

employ a single weight parameter a, 0 < a _< 1, and apply for both one-dimensional

and curvilinear-coordinate multi-dimensional formulations.
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5.1 One-Dimensional Average States

Expression (52) constitutes a quadratic equation for (p)

with internal-state solution

(_)_ (_)_
fir pL

-0 (60)

L+

pL (61)

Furthermore, the insertion of expressions (56)-(57) into (61) yields a single equation

for a with solution

v_
0 _< (_ = _< 1 (62)

With this solution, (56) becomes

__ _--pn (63)

which coincides with the classical form.

Inserting the average density and momentum into the two leading terms in the

rn L

7) (64)

lhs of (53) yields the equality

. _ ^ _ (m R_(._-0_) +_ (_-m_) --_,
Hence, (53) becomes

(65)

which constitutes the average-state resolution of the flux of E. A similar operation

sequence on (54) yields

= __-- '_ _ + (p_- p_) (66)

which constitutesthe average-stateresolutionof the fluxofp. Whereupon, inserting

(67)

(61) into (65) yields

= E L _ + E n

_+4z
= _+o(___)

7
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where a is defined by (62). Hence, the average total energy/_ is also determined

with exactly the same weight as the average density and momentum. Finally, the

average pressure/3 is analogously expressed as

_ = pL + a (pn-- pL)

owing to the identical structure of (65) and (66).

(68)

5.2 Multi-Dimensional Average States

The derivations of the average state for the jacobian of the multi-dimensional flux

(10) with embedded metric data ejk are similar to the previous developments, and

show that the average one-dimensional conservation variables also apply for multi-
dimensional curvilinear coordinate formulations. The variation of the contravariant

flux j_k is expressed as

((-) )op op eL = A ( jkL) (69)
Ak q' P' -_P m,E' p,E' --_ o,m'

In order to simplify the notation, the partial derivatives of pressure in (69) axe

denoted as

Pp = , Pmi = , PE =

m,E p,rnj ,E,i_j p,m

Therefore, the average state jacobian in (69) becomes

(70)

0 , elk

mj mi _ mj
--ejk-_mi -k eikp'-p; , etk'7- q- eikpmt 4- ejk--7-_ie ,

P" p P
A

mj _ mj

-esk-_ms (E + _) + eJk7p, , -_e'k(_ + _) + eJkTPm, ,

0

eikPE

+
(71)

where, 1 < (i, g) < n are the row and column indices, for the n-dimensional res-

olution of momentum. In the sequel, the various formulae are exemplified and

demonstrated for a two-dimensional formulation. In this case, the average jacobian

Ak becomes a 4 × 4 matrix, where the middle two rows and columns respectively

derive from the middle row and column in (71) for i,g = 1,2. For constant metric

data ejk in each and every computational cell, the contravariant flux variation in

(69) becomes

A (ejkfj) -- ejkA (fj) (72)
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Therefore for the convectionand acoustic-waveflux vector decomposition, expres-
sion (69) yields the identity

(n L_ (n
m L ) ejkmf _ L (73)

for continuity equation,

mjA (m, ___) ml(m_ m# )--ejk"_m, (pR_ pL) + elk---fi- + ej_ (m_ -- m L) + e2k--=-p -- =

elk

m,E

m R. m L
j L

R ejkTmlejk pn m_ -
(74)

(pn_pL)+ (_____)p,_ .(mn_mL)+(.__.E)p,m(ER__P EL)) =

elk(pa--p L) (75)

for the longitudinal-momentum equation,

_-. A ( m2mr)+ +

m R L
j n mj _L

ejkTm_ - esk-)-L-""2

Op

(76)

for the transverse-momentum equation, and

_ .__ ms

ms _, (pa _ pL) + es k_ (mtff - m L) + ejk---fi- (E R -- E L) =
gJk _2

m R L

ejk-_ E a -- -. rn___LwLV3k pL "_

_e,k_.p(pa_pL)+esk__(m;_m:)+e, kT_(pn pg)

mn m L
.__L R .__L L

e_k pn P - ejk pL P

for the energy equation, where (79) implies (75), and (77).

(77)

(78)

(79)
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Expressing the principal-momentum flux variation in homogeneous form yields

_._-_.-...(.'"-,'9 +_= (m,"-m,9 - m" mf_/_l,, 7'-"'-7 ').1+

_ ->-m.(,.R-,.9+7

_ R = o (8o)_#,_(m__mr)- 7m,m'<_m_'_7')
and since the metric data are linearly independent, the two expressions between

brackets will simultaneously vanish. Whereupon, the first expression reverts to

(60), hence the average density coincides with (56), while the average principal

momentum is

(81)

where a is defined by (62). Thereafter, inserting the average density and principal

momentum into the second expression yields

p m2 ml (82)

which defines the average transverse momentum as

_-m_+. (mr- m_)_2 (sa)

where c_ is again defined by (62). The homogeneous form of the transverse - mo-

mentum flux variation is then

<- "'_(m,"-,',,f)+.,k ->-_: (,,"-.9 +7

- ( )]1 R m_ +rn# (m n _ m_)- mn
p -p--Frn2 pC

_ m2 _ rn2 _ _ 2 n = 0 (84)
e2k -_-rn2 (,o n - pr) + 2-7- (rnna m_) rnn rn}rnL'_,, 7 _ -7 _)

After interchanging the momentum subscripts, this expression reverts to the previ-

ous principal-momentum flux variation, and consequently it is identically satisfied

by the developed average density and momentum components. The average partial

derivatives in expressions (75), (77) are then exactly determined in Section 8.

The insertion of the average density and momentum components into the two

leading terms in the lhs of (78) yields

-_._ (,."-,9 +_,_-_(m_- _) =

m" m_ (85)pL 1
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Hence,(78) becomes

(86)
which constitutes the average-stateresolution for the variation of the contravariant

flux of E. A similar operation sequence on (79) yields

(87)
which constitutes the average-state resolution for the variation of the contravariant

flux of p. Whereupon, inserting the average density and momentum components

into (86) and considering the linear independence of the metric data yields the

average volume specific total energy

= E L + a (E n - E L) (88)

exactly as before. The average pressure is then again expressed as

= ¢ + _(p_- ¢) (89)

owing to the identical structure of (86) and (87).

6 Reference Average State

The original convection average state [3] relies on an average velocity and enthalpy,

and can be expressed as

= _lf"PTpn (90)

_=,,L v/7 v_
+ VI_ + u n V/__+V/- _ (91)

= *t_v_ + U_vga (92)

No average pressure i6 or volume specific total energy E is explicitly defined in the

original derivations. However, the developed conservation variable average state

(56)-(59) identically reverts to (90)-(92). This is proven by inserting the average

density, momenta, energy and pressure states (56)-(59) into the definition of each

2O



velocity componentand enthalpy which yields

__ m uLX/_ + uRvf_
-- (93)

/.-.-- r""-

.H- E + P - Hr"x/PL + HnX/Pn (94)

z
Therefore, the developed convection average states (56)-(59) are totally equivalent

to (90)-(92). it is occasionally reported that the average pressure should be obtained

using its own equation of state evaluated at (90)-(92). However, if this course of

action is selected, then the corresponding average total energy cannot coincide with

the internal average (58). In either case, only in the enthalpy function do pressure

and total energy emerge in the conservation variable jacobian. Therefore, any set

of _ and E that does not alter (94), will yield the same convection average state.

As stated in Sections 2-3, the average enthalpy does not satisfy the mean value

theorem for the energy equation. This is proved observing that the legitimate mean

value theorem variables axe the jacobian differentiation variables which coincide

with the entries in q. Hence the total enthalpy

1 (E + p(p,m,E)) (95)
H(q) = p

is itself a function of the dependent variable q. Consequently, its mean value theorem

average is

where superscript MVT denotes such an average. However, the average enthalpy

(94) may not coincide with this expression. In fact, for the ideal gas equation of

state (144), *he difference between (96) and (95) is

where the terminal minimal variation form accrues from the internal average total

energy (58).

As detailed in Section 7, the average sound speed squared is exactly expressed

as

op • _- • (99)3 = op + -_ =
m,E a,m P
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and depends upon the average enthalpy (94). This dependence, which results from

the insertion of the average density and momentum into the energy flux resolution

(78), constitutes the fundamental reason why (99) may supply an external average

sound speed, for some left and right states. For example, using (144), the ideal gas

specification of the average sound speed squared becomes

(22=('1'-1 2_ +(7-1) _- ,8 "

The insertionof the averagestates(91) and (92) into (100! thenyields

-- 2 7 pL " pR pL +o_ (c L) +(1--C_)(c R) (101)

which, as also determined in [7], adds an extra term to an internal average for c2.

Conversely, if ._ in (99) were replaced by (96), this extra term would not emerge.

However, (99) is the only correct expression compatible with the flux difference

resolutions (43), (69). This result should not be considered detrimental, since the

fundamental flux difference relations (43), (69) are rigorously satisfied for arbitrary

left and right states. On the contrary, (99), hence (101), may be used to determine

whether some external average eigenvalues occur in the computed flow field, and,

consequently, whether a local enhancement of the basic flux difference scheme is

warranted.

7 Average Characteristic Relations

A completely general eigenvalue analysis performed on the multi-dimensional curvi-

linear- coordinate jacobian (71) yields an original expression for the speed of sound

which is shown to revert identically to the classical thermodynamic relation. The

same analysis yields the average eigenvalues, Math number, and eigenvectors as

functions of both the average state (56)-(59) and the partial derivatives of pressure.

Importantly, these results apply for any specific form of these derivatives.

7.1 Average Eigenvalues

The trace of matrix (71), which coincides with the sum of its eigenvalues, is

+ ejkp O-Etr (-4.k) = (n + 2)ejk--_-- + ejk _ ,.m,.E,,#j p.m

Considering that in general the acoustic-wave average state corresponding to the

average partial derivatives of pressure may differ from _', the trailing two-term ex-

pression in (102) may not vanish since it may not satisfy the compatibility relation
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(127) derived in Section 8. Hence, expression (102) may not reduce to the usual re-

sult tr (-4k) (n+2)ejk rnj= --:-. Consequently, the eigenvalues of (71) may not coincide
P

with the classical expressions, which for a three-dimensional cartesian-coordinate

reference frame are
A

)_kl a rnk rnk= 7 ' ak,,_= -=p± c (103)

where c denotes the speed of sound. In fact, the analytical solution of the charac-

teristic equation

det [Ak (_,_, (_pp)rn.E, (-_m)o,E, (-_E)p,meJk) --AkI] =0
(104)

yields

mj (I05))_kl.3 -= ejl¢ ^
P

_J ^ 4- (( _ + ejk-ejka2jA'_ll2 (106))_k,._= ej_-_- + ejkud, eik_d,j 2

where fie - {ue_ }T, 1 _< j _< n, and a _ are directly obtained as part of the eigenvalue
solution itself as

(q'P' N - .,_7 ÷ _ _,_ .,_

With these expressions the sum of eigenvalues (105)-(106) then coincides with (102).

7.2 Speed of Sound

Relation (108) delivers an original alternative expression for the square of the speed

of sound that identically reverts to the classical thermodynamic expression

c2 = = Op p
isen • p

(109)

as directly obtained using the equation of state, the first principle of thermody-

namics, and the definition of speed of sound. This coincidence accrues from a

differentiation chain rule restatement of the partial derivatives of pressure in (108)
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using expressions (124)-(126), detailed in Section 8. Insertion of these expressions

into the generic form of (108) leads to

a2 q,p, Op Op m+ Op +--
= _ p,E P re,F, P -_ p,m

= _p p3 ]+_ _+

p. m T • m)

= Op _+_-_ (110)

which coincides with (109). Consequently, a 2 is indeed an alternative relation for c 2.

Whereupon, insertion into (108) of the pressure derivative compatibility relations

(127), derived in Section 8, yields the average conservation-variable speed of sound

squared

= m,E p,m _ -- _ • (111)

which depends on only two partial derivatives, hence it closely resembles the classical

thermodynamic relation (109). Expression (111) does not depend on an average

internal energy, hence is not affected by any assumption connected with such an

additional variable.

7.3 Average Mach Number

The eigenvalues of the one-dimensional average jacobian (44) are obtained from

(105)-(106) as
m

>,1 = -_ (112)
P

A_,3=-=+_d + _]+_ 1/2
P

Expression (113) leads to an average-Mach number definition as follows. For a

positive velocity, the eigenvalues (112)-(113) are all non-negative if

("=+_d_> _+ (114)
P

which yields

+ 2-_d k _ (115)
P
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Consequently, the average eigenvalues have all uniform sign if the expression

A .,. .,m (116)M-

is greater than one. Therefore, 2_ defines the average Mach number. The same

result is achieved by enforcing non positivity of A2, for a negative velocity. Expres-

sion (116) depends on both _ and the partial derivatives of pressure, and in general

differs from the classical expression evaluated at the ideal-gas average state, unless

the average partial derivatives correspond to _ itself, see Section 8.

7.4 Average Eigenvectors

The three right eigenvectors for the one-dimensional similarity transformation

A _,_, _q =XAX-'
(117)

are

1 , 1 /

A A

m m ( )
P P

1

(118)

where the second and third column for X respectively correspond to the positive

and negative sign of the ensemble + in the second column of (118). Therefore, the

average conservation-variable eigenvalues, Mach number, and eit{envectors (105)-

(106), (116), and (118) differ from the classical forms due to their dependence

upon theaverage deviation velocity ud' in addition to the average sound speed

squared a 2. Consequently, the sign of (106), (113) may not coincide with the sign of

the pointwise eigenvalues in transonic flow regions, while X may not revert to the

pointwise eigenvectors. Hence, in equilibrium real gas situations, any approximation

to these exact internal conservation variable average eigenvalues and eigenvectors

may yield for some thermodynamic states a terminal flux splitting scheme with

locally inadequate intrinsic dissipation. For an ideal-gas specification the average

partial derivatives correspond to _"itself, see Section 8. Hence, the deviation speed

vanishes and consequently (105)-(106), (116), and (118) revert to the classical forms.
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8 Partial Derivatives of Pressure

In the published procedures [4,8,9] the average partial derivatives of pressure are es-

sentially regarded as additional independent variables. Hence, they are algebraically

determined using additional geometric projections and scale factors. In distinction,

these derivatives are herein simultaneously computed by determining their intrinsic

acoustic-wave average state, for the mean value theorem resolution of the pressure

variation jacobian.

8.1 Pressure Jacobian and Compatibility Relations

For a homogeneous gas in thermo-chemical equilibrium, the pressure equation of

state may be expressed as the function differentiable almost everywhere [1] in f/

p =;(p,d (119)

where _ denotes the mass-specific internal energy. Therefore, for a given thermody-

namic state (p, _), both p and its partial derivatives are theoretically determined.

For a CFD simulation, hence for a given q, the mass-specific internal energy is cast

as

1 ( mT "_m'_ (120)_(q)= _ E 2p ]
Therefore, e is no longer an independent variable, but intrinsically depends on

the conservation state variable q. Consequently, within an equilibrium-gas CFD

algorithm, p is expressed as

p= p(p,e(p,m,E)) = p(q(_,t)) (121)

Hence, the pressure jacobian is also a function of q

- (q) (122)

Consequently, the average pressure jacobian corresponds to

Op Op

N-N( (12a)
where _" denotes the associated intrinsic evaluation state.

The partial derivatives of pressure with respect to the state variable q are ex-

pressed by way of the differentiation chain rule and the thermodynamic derivatives

m,E • p m,E _ p

as

(124)
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0£

Op _ p p,m

Whereupon these formulae lead to the fundamental compatibility relation

(125)

(i26)

=o ,,27,
The developments of Sections 4-5 yield the jacobian pressure variation expression

Whereupon, insertion of the compatibility relation (127) into (128) and noting the

dependence on the intrinsic evaluation state q" yield the reduced form

_p _T

m,E (129)

which is universally valid for both ideal and real gas equations of state, it only

depends upon two partial derivatives, and it thereby closely resembles the classical

thermodynamic expression

P

Expression (129) coincides with a special form of (130). This result is obtained by

inserting (124) and (126) into (129), which yields

( ) (-)[ (-;- ) V]pn_pL _P Op 1 m _ E Ap----.Am+ (131)

P

This relation reverts to (130) provided that

Ae (0", Aq) -- _ _ AE/_ Ap-- _-. Am +- P_ (132)

This expression corresponds to the variation of (120) in terms of its first differential,

and in general does not coincide with the simple independent variation

_ =-_(a)-_(,_) (133)
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eventhough the differencebetween (132) and (133) is of order O (Aq2). When the

acoustic-wave average state _ coincides with the convection average state _, then

(132) coincides with (133)

However, the convection average state _" may not always satisfy (129) or (130).

Therefore, within a CFD algorithm, the pressure variation (130) is in general ex-

pressed as

¢ p

For a non-vanishing simple variation Ae, expression (135) is cast as

¢ P

(136)

which formally reverts to (130), and corresponds to the actual pressure variation

relation utilized in several reported procedures, as detailed in Section 9. Following

(122)-(123), relations (129) and (135) are properly expressed as

pn _ pL = (_p (q')) m,s /Xp + ( _PE (q-')) p,m . (/XE - mT . Arn)-_ (137)

++=(+) (+)_--_p(_ zxp+ _-_-(_ _e(_,Ae) (138)
¢ P

Therefore, all of these derivatives can be simultaneously determined by identifying

the single state _', as detailed in the next section.

8.2 Intrinsic Evaluation State Determination

The existence of an internal state _ for the evaluation of the partial derivatives in

(137) is ensured by the multi-dimensional mean value theorem (11), since p is a

differentiable function with continuous partial derivatives almost everywhere in _2

[1]. The determination of the intrinsic state _ = qL + _ (qn_ qL) state is then

achieved by the equivalent direct computation of the single weight coefficient _. To

this end, (137) is re-expressed as
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(op )))F(5) = -_p (qL + 5 (qR _ qL ApT
m,E

• Am) -- Ap = 0

(139)
This relation constitutes a single equation for the unknown 5 which can be solved

to an arbitrary degree of accuracy by way of a Newton-Raphson iteration strategy

s s+l -s'- F(sS) (140)
AF

where superscript "s" denotes the iteration index. Owing to the multi- dimensional

mean value theorem, the solution _ satisfies the inequality

0.0 _< _ _< 1.0 (141)

This relation circumscribes the root of (139), and an initial estimate s ° for a first

mesh-node computation may then coincide with (62), while As << 1.0. Whereupon,

s ° at subsequent mesh nodes may coincide with the value of 5 at a neighboring point

where (139) is already solved. This choice leads to an efficient computational strat-

egy that only requires two or three iterations owing to the good initial estimate.

Therefore, evaluating (140) is relatively inexpensive, it leads to a super linear con-

vergent process, and directly yields 5. Hence, the average state _ as well as the

average partial derivatives that satisfy (137)-(138) are simultaneously determined.

This is the procedure utilized for the benchmark test in Section 10.

A viable expression for AF in the denominator of (140) is

(AF)o,- (AE- A,,) +

Ap--:- - Am • AreAs (142)
a _ P a S

where the last term corresponds to the differential of the coefficient of ApE with

respect to a. Furthermore, (App),, and (APE)a, are

;
(143)

Note that at covergence, the solution 5 no longer depends upon (142)-(143).
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8.3 Ideal Gas Partial Derivatives

For an ideal gas, (139) is identically satisfied for 5 coinciding with (62). This

conclusion follows from the state equation

m T " m)p=(7- 1) E _p (144)

and associated average partial derivatives

()
(145)

The insertion of (144)-(145) into (139) yields

zXE- lzX m'_ _
2 (m;. ] _r._2_.

----T
m

Ap- -- • Am + AE (146)

hence

2m____ m m
fi2 Ap+ ^ .Am-A =0 (147)P

This expression is identically satisfied by the average density and momentum com-

ponents (56)-(57), since (147), for a two-dimensional formulation, constitutes the

sum of the first relation in (80) and the second relation in (84), which are them-

selves identically satisfied by the convection average state. The same conclusion is

achieved for a three-dimensional formulation.

9 Comparisons with Other Formulations

The pressure variation and sound speed expressions reported in [4,8,9] are ana-

lyzed and their underlying hypotheses identified. These derivations algebraically

determine the partial derivatives in (138) without reference to the intrinsic state _.

The various solutions for each partial derivative set generally do not coincide with

one another. Furthermore, it is a-priori unknown whether some evaluation state _'_

exists in the domain of the analytical partial derivatives such that

where subscript a denotes algebraic determination. And even if such states existed,

they may correspond to external conservation-variable states.
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9.1 Pressure and Sound Speed Expressions

The pressure and sound speed expressions associated with the current formulations

are listed in Tables 1 and 2 along with the the thermodynamic relation for the sound

speed.

Table 1: Pressure Variation Expressions

Author Ap

Glaister [4]

Liou et al. [8]

Vinokur et al. [9]

Present

P

Op _AP+ _ o

(;)N zxp+ zx(p )
pe p

Table 2:

Author

(Thermodynamics)

Glaister

Liou et al.

Vinokur et al.

Present

Sound Speed Exp_ssions
C 2

• p2

. 2_ J

m,_ e,rn PP J

The reported formulae [4,8,9] use the thermodynamic derivatives of pressure and

some combinations of flow variables in the respective sound speed expressions. Sev-

eral derivations also introduce an extra average mass specific internal energy. The

average derivatives in these constructions are synthesized using the assumptions

that the general jacobian pressure variation and sound speed squared can be reli-

ably satisfied using the following constraints

1. ideal-gas average state evaluation of selected expressions within the pressure

variation
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2. selection of simple integration paths and associated auxiliary state

3. geometric solution projection with arbitrary scale factors

Significantly, the developed exact expressions (111)-(129), which are independent

of these assumptions, lead to the reported formulae when these constraints are

explicitly used.

The equation of state used by Glaister [4] and Liou et al. [8] is

p=p(p,e) (149)

Thus, the partial derivatives of pressure in (44) are cast as

The insertion of (150)-(152)into (129) yields

= op ,_ (151)
o,E _ p " -- i

( )Op = Op (152)

-_ .,m _ _ i

Ae Am

(150)
=_

(153)

Whereupon, the intrinsic assumption in the formulations of Glaister and Liou et al.

is that (153) can be reliably satisfied by both evaluating the terms between brackets

at the ideal-gas average state, and introducing the average mass specific internal

energy

_ = eL v/_ + en Vf-_

V_+V _ (154)

With this assumption, the components of the deviation velocity ud vanish, while

(153) becomes
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which coincides with (136) and the expressionused in [4,8]. The averagepartial
derivatives in (155) are then determined by projection, as highlighted in Section
9.2. Note that even if thesepartial derivativeswere exactly determined, using the
procedureof Section 8.2for example, there would be no a-priori assurancethat the
evaluation state (_, _ correspondsto an internal conservation-variablestate. The
expressionfor the speedof soundin terms of p and ¢ is then obtained by inserting

(150)-(152) into (111) as

With the stated assumptions, (156) becomes

(156)

(157)

which coincides with the corresponding expression in [4,8]. Considering that (154)

is not evaluated at an internal conservation-variable state, but results from a direct

average, expressions (155)-(157) do no revert to the standard ideal-gas expressions.

Finally, the internal-state average jacobian (44) is also modified by restating the

partial derivatives of pressure therein, with expressions (150)-(152) with coefficients

evaluated at the ideal gas average. This operation then yields the matrix utilized in

[4,8]. Therefore, it is not a-priori guaranteed that this matrix is evaluated at internal

conservation-variable states, with unpredictable consequences on the eigenvector

matrix, hence on the accuracy of the associated flux-difference-splitting results.

Similar conclusions carry over to the developments of Vinokur et al. [9]. Their

reference equation of state is

p=p(p,p¢) (158)

Consequently, by using (120) the partial derivatives of pressure in i129) are cast as

,_ + t_-_pc) ' • tm-_-_i ) (159)

( ff-_Pm) ,,E = ( Op _\Ope]p " (-- mT _lt P ] (160)

"_ p,'rn p

The insertion of (159)-(161) into (129) yields

Op @ [_ :_ --. Am + t,E (162)
Ap = N Ap+ _ L 2_ _'p-- _

pc p
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Whereupon, the intrinsic assumption in the formulation of Vinokur et al. is that
(162) canbe reliably satisfiedby evaluating the terms betweenbracketsat the ideal-
gasaveragestate. With this assumption, the componentsof the deviation velocity
rid vanish, while (162) becomes

,_ , \ 2p )

(;)N ,oA°+ _ /,(p_)
(163)

which coincides with the corresponding expression used in [9]. The average partial

derivatives in (163) are then determined by projection, as highlighted in Section

9.2. The same conclusions stated after (155) also apply to (163). The expression

for the speed of sound in terms of p and pe is then obtained by inserting (159)-(161)

into (111) as

With the stated assumption, (164) becomes

_ _ 2_ J
(165)

which coincides with the expression in [9]. Expressions (163)-(165) then revert to

the standard ideal-gas expressions, since no additional average mass specific internal

energy is utilized. Finally, the internal state average jacobian (44) is also modified

by restating the partial derivatives of pressure therein, with expressions (159)-(161)

with coefficients evaluated at the ideal gas average. This operation then yields

the matrix utilized in [9], which again is not guaranteed to depend consistently on
internal conservation-variable states.

9.2 Algebraic Partial Derivatives

The average partial derivatives in (155), (157), (163), and (165) are algebraically de-

termined without specific reference to their intrinsic evaluation state. This algebraic

determination accrues from a projection of a set of trial partial derivatives onto the

admissible-state line. These trial derivatives are obtained through an approximate

evaluation of the line integrals in the exact pressure variation expression

• p
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Ap + A¢

Therefore, the trial partial derivatives are defined as

(166)

(167)

while (166) is one form of the admissible-state line equation. Note that the devel-

opments of Vinokur et al. are obtained from (166)-(167) by replacing e with pa.

At this point, a multitude of integration paths can be selected for the exact inte-

gration of dp since this is an exact differential and consequently Ap is independent

of the integration path. Nevertheless, the individual partial derivatives in (166) do

depend upon the integration path, even though Ap does not. Hence, different sets

of partial derivatives (167) and associated speeds of sound are in general obtained

with different paths, which in turn will depend upon selected auxiliary states. The

specific auxiliary states employed in [4,8,9] are

while the selected integration paths are

Table 3: Inter;ration Paths

Author [ F

Glaister [4] LABR, LBAR

Liou et al. [8] LCR

Vinokur et al. [9] LR

With these paths, the chosen forms of (167) are

Author

Glaister

Table 4a-b:

Liou et al.

Vinokur et al.

Author

Glaister

Liou et al.

Vinokur et al.

Trial Partial Derivatives

Ap

up]

Approximate integration of (167)

P

p_ _ pL

\ Elf,

Approximate integration of (167)
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The projections of these approximations onto the admissible-state straight line,

corresponding to (166), are then the coordinates of the point shared by this line and

the approximation line. The latter line contains the trim derivative approximation

point, with coordinates based on (167), and intersects the admissible-state line at a

suitable angle, as determined by selected scale factors. Representative closed form

solutions are

Table 5a-b:

Author

Glaister [4]

Liou et al. [8]

Author

Glaister

Liou et al.

Average-Partial Derivatives

1 lap + p -p ]

1 Ap _ Ae

2 A-_+ A--_ J

1lAP-(Op) Ap (Op)p]

where Glaister's trial derivatives from Table 4 are used to obtain his solution from

Liou's determination in this table.

Analytically, these average partial derivatives correspond to the solution (x, y)

of the linear system

{ _;x +/3y = "r (169)_x - ,_y= _- ,_y

where the first equa.tion is associated with (166), while the second represents the

approximation line. The solution of (169) is

X "--"

+

_-r- ,_(_- ,_) (17o)
Y = _2 +_/_

By author, the variables in (169)-(170) are defined as
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Table 6a-c: Variables in (169)-(170).

Author x y

Glaister [4] T_ _,0e ]p £ Opp

Liou et al. [8] _ k,_]_ _ _PP

Vinokuret al. [9] _ , N ,_ _ o

Author •

Glaister

Liou et al.

Vinokur et al. Op_ -1

m,_ 1

Author

Glaister

Liou et al.

Vinokur et al.

R Ezip Ea p i
Ap Ap

Ac C-_ C _pP 1
Ap Ap

Ap --Ap -S2/kp A(pe)

m

Note that since Glaister and Liou et al. select fi = fi, the admissible-state line is

orthogonal to the approximation line in their implementation, whereas this feature

is not present in the formulation of Vinokur and Montagne. The parameters n,

fl, and fl depend upon TO, C, and S which are free are non-dimensionalizing scale

factors. Therefore, even after specifying an integration path, a formulational non-

uniqueness still persists upon variation of these scale factors.

With the specific selection

/¢=__Ap , E=--AP (171)
Ae Ap

and using the trial derivatives in Table 4, expressions (170) yield the solutions of

Glaister and Liou et al. listed in Table 5. All of these average partial derivatives

algebraically satisfy the pressure relation (166), even though they may become

indeterminate for vanishing Ap and A¢, and generally do not coincide with one

another.
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10 Representative Results

As indicated in Section 2, the solution of (14) and (139) is in general non-unique.

This feature is now demonstrated for a shock-tube test case [4] for which intrinsi-

cally exact average states are determined without separating the kinematic/energy

terms from the pressure relations. With these solutions, the associated exact ther-

modynamic pressure derivatives and average sound speed squared are determined

as indicated in Section 8'2. These results are then compared with the predictions

of Liou's and Glaister's methods for an appropriate quantification of their inher-

ent approximations, as induced by the algebraic synthesis of the average partial

derivatives of pressure.

The test left and right states are

Table 7: Initial Sh(

Left

p 100 atm

T 9014 K

u 0 m/see

ck Tube States

Right

1 arm

300 K

0 m/sec

Using the left-state pressure and temperature as reference values, the associated

non-dimensional states are

P

m

E

P

T

P

Table 8: Non-Dimensional States

Left Right A B

1.000 0.447 0.447 1.600

0.000 0.000 0.000 0.000

5.491 2.498E-02 2.454 5.580E-02

5.491 5.580E-02 5.491 5.580E-02

1.000 1.000E-02 0.403 2.231E-02

1.000 3.327E-02 0.948 3.326E-02

1.053 2.231E-02 1.008 2.2311E-02

0.140 0.178 5.880E-02 0.399

38



Figure 1 showsthe variation of (139) for 0.0 _<o_ < 1.0, for both ideal and real

neutral air, corresponding to the left and right states in Table 8.

0.5 ' I ' I ' I ' I

0.0

-0.5

-I .0

× Ideal Gas
. Real Gas

-1.5 , I , l ,

0.0 0.2 0.4 0.6 a 0.8 1.0

Figure t: Variation of Function (139)

Evidently, the ideal-gas version of (139) is identically satisfied for any value of a,

following (146)-(147), since m = 0. Conversely, for real air, not only does a solution

exist, but as many as three are possible in this case. These solutions, as generated

by (140) with Aa = 1.0E - 04, are listed in the following table, along with the

ideal-gas average state
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Table 9: Ideal-Gas Average State and Exact Solutions.

Ot

p

m

E

g

/x¢(_, Aq)

Ae

zx ( zxq)

C 2

Average Sol. I Sol. II Sol. III

0.599 0.689 0.860 0.908

0.669 0.618 0.524 0.498

0.000 0.000 0.000 0.000

2.216 1.719 0.789 0.527

3.312 2.782 1.505 1.058

-5.435 -6.356 -8.842 -9.800

-5.435 -5.435 -5.435 -5.435

1.000 1.169 1.627 1.803

0.709 0.618 0.369 0.290

9.712E-02 0.102 81895E-02 8.310E-02

9.712E-02 0.119 0.145 0.150

0.797 0.806 0.778 0.767

According to these results, the variation of mass specific internal energy/_e(_', Aq)

significantly depends upon the intrinsic state _'. Conversely, the dependence of the

sound speed squared on _" is less pronounced, while the eigenvalues corresponding

to these three solutions all display the same algebraic sign structure, in agreement

with the eigenvalue consistency theorem.

For this test case, the trial and projected average pressure derivatives for Glais-

ter's and Liou's methods are

Table 10: Trial

Author

Glaister [4]

Liou et al. [8]

and Average Partial Derivatives

1.079 0.551 0.180 0.126

0.709 0.772 9.712E-02 0.103
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Furthermore, the admissible-state straight-line equation associated with (166)

and the first equation in (169) is

N = -0.102 + 0.1s2
p

Figure 2 graphs the admissible- state straight line along with Glaister's and Liou's

solution projections.

0.20

0.10

0.00

Sol. 3

Sol. 1

Trial Sol.

Admissible States

Glaister's Projection

+ Liou's Projection

Trial Sol.

0.00 1.00

Figure 2: Admissible-State Straight Line

The trial solution of G1Mster's method is farther than Liou's from the admissible

state line, even though its associated projected solution is closer to all three exact

solutions than Liou's. Clearly, a different choice of the scale factors T_ and g may

yield closer terminal projections, even though such factors would remain solution

dependent, and there seems to exist no practical way to determine them accurately.

The solution closest to the ideal-gas average state is then isolated, since with

this selection the exact average eigenvalues, Mach number, and eigenvectors (105),

(106), (116), and (118) converge to the pointwise forms. Table 11 presents the exact

solution I and the ideal-gas averages, as compared with the predictions of selected

expressions in Tables 2 and 5.
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Table 11: Exact and Approximate Solutions
Exact Average Glaister Liou et. al

(°0_pp _ 0.618 0.709

e% 0.00 % -14.56%

E%

e%

0.551 0.772

-10.84 % -t-24.91%

0.119 9.712E-02 0.126 0.103

0.00 % 18.38% -5.88 % ,1,13.44 %

0.806 0.797 0.666 0.867

0.00 % 1.11% -17.36 % -t-7.56 %

For the thermodynamic partial derivatives of pressure, the percent error e%

reaches 24.91%, while that incurred in the speed of sound squared is as high as

17.36 %. Furthermore, in this case, these errors are not significantly different than

those generated by simply evaluating all thermodynamic partial derivatives at the

idealigas average state, as indicated in Table 11. In general, these errors will prop-

agate to the eigenvector matrix with unpredictable consequences on the accurate

flux-d{fference splitting computations of subtle flow features such as shock waves

and contact discontinuities.

Concluding Remarks

The theoretical developments in this report yMd unambiguous internal-average

conservation variables for curvilinear- coordinate multi- dimensional flux difference

resolution, including the speed of sound and the partial derivatives of pressure.

These derivatives are determined for arbitrary equations of state without any extra

assumption. Hence, no average internal energy is introduced, and no approxima-

tions and projections are employed.

The jacobian matrices (44) and (71) attain a tidy structure, and for equilib-

rium real-gas equations of state, their eigenvalues and associated Mach number are

shown to differ from the classical forms. Only after introducing subtle assumptions,

documented in Section 9, can the average eigenvalues formally coincide in these con-

ditions with the classical forms. Of course, the unavoidable theoretical price to pay

is the loss of an a-priori assurance that the jacobian partial derivatives of pressure

and speed of sound either exist in the domain of the analytical partial derivatives,

or correspond to an evaluation at internal-average conservation-variable states, with

unpredic'tabie consequences on the eigenvector matrix, and hence on highly accurate

flux-difference-splitting computations of subtle flow features like shock waves and

contact discontinuities. Conversely, the formulae presented in this research afford

this a-priori assurance. Furthermore, their very existence, uniqueness, and numer-

ical demonstration lead to the fundamental conclusion that the generalization of
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the average-statenotion to an equilibrium real-gasequation of state introduces no
additional degreeof freedom in the determination of the averagepartial derivatives
of pressure,unlike what is stated in [9].

Certainly, the reported averagejacobianswill convergeto their respectiveclassi-
cal pointwise forms when the given computational-cell left and right statesapproach
each other, which for smooth flows occurs under appropriate mesh refinements.
Therefore, although these averagejacobians may correspond to external average
conservationvariables,with thermodynamic partial derivatives and speedof sound
possibly affectedby non negligibleerrors at shock locations, their utilization in sig-
nificantly refined grid computations, e.g. [8], has led to satisfactory results. One
howeverwonderswhether theseproceduresdepend upon uniform refined grids for
their reliable operation.

The developedaveragejacobians and associatedeigenvaluesand eigenvectors,
consistently depend on internal-averageconservation variables and without extra
assumptions they exactly satisfy the flux difference resolution even for arbitrary
separation of the computational-cell left and right states. Furthermore, they are
valid for arbitrary multi-dimensional curvilinear-coordinate meshes.
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